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Abstract. In this paper we develop the theory of high-order radiation boundary

conditions for wave propagation problems. In particular, we study the convergence of

sequences of time-local approximate conditions to the exact boundary condition, a_d

subsequently estimate the error in the solutions obtained using these approximations.

We show that for finite times the Pad_ approximants proposed by Engquist and Majda

lead to exponential convergence if the solution is smooth, but that good long-time error

estimates cannot hold for spatia].ly local conditions. Applications in fluid dynamics are
also discussed.

Key words. Radiation boundary conditions, integral equations, hyperbolic sys-
tems.

1. Introduction. Problems in wave propagation are generally posed
on unbounded domains. Their numerical solution thus requires the intro-

duction of an artificial boundary and the imposition of radiation boundary

conditions there. Scores of authors have considered this problem, and a

number of reasonably accurate procedures have been discovered. Nonethe-

less, in order to obtain some specified accuracy, it is still generally the
practice to enlarge the domain- a process which may be inefficient and
difficult to automate.

In this work we pursue a different approach - namely to fix the artifi-

cial boundary and to improve the accuracy by increasing the order of the
approximate radiation conditions. From a practical point of view, we see

that these high-order conditions can be easily implemented via the intro-

duction of auxiliary functions on the boundary. From a theoretical point of

view, estimates of convergence for fixed boundaries and increasing order are
needed. We develop such estimates for the wave equation in a half-space

by first finding a convenient representation of the exact radiation condi-
tion, which turns out to involve convolution in time with a Bessel kernel.

Approximate conditions are similarly represented in terms of convolutions,

and the error then depends on the difference between the exact and ap-

proximate kernels. Using approximations to an integral representation of

the exact kernel, convergent time-local approximate conditions are derived.

These include the spatially local Pad_ conditions proposed by Engquist and

* Supported, in part, by NSF Grant No. DMS-9304406. Part of the work was also
carried out during a visit to the IMA, U. of Minnesota.



Maids [7,8]. For long time computations, on the other hand, it is shown

that spatiaUy nonlocal conditions are generally needed.
Generalisations to other problems are presented, including the lin-

earised Euler equations as well as the wave equation with circular and

spherical boundaries. Throughout we indicate some interesting theoretical

and practical issues which remain unresolved.

2. The Wave Equation in a Half-Space.

2.1. Exact Boundary Cond|t|ons. We consider:

(2.1) _=c2v2_+/, t>0, ==(=l,_)eC0,oo)x_ -1,

(2.2) u(z, 0) = g(z), Bcz*(O, y, $) = go(N, $).

We suppose, for some L, $ > 0, that jr - g = 0 and c - 1 for zt >_ L - &.

Let fi(zt, k, s) be the Fourier-Laplace transform of u with respect to y and

_. Then it is easily shown (e.g. [11]) that ,i satisfies the exact boundary
condition at Zl = £:

0fi

(2.3) _ + (,2+ lkl2)'/2_=0.

(The branch of (s2 + [k]2)t/2 ischosen so that itisanalyticin the right

half_-planeand has positiverealpart.)This exact conditionisexpressed

in terms of u in the followingway: Let Y denote Fouriertransformation

with respectto y and .T-z be itsinverse.Let:

(2.4) K:({)= Jl(t__.._)= 1/j _ _
I/32 cos 1J_d'tu.

As shown in the appendix,

(2.5) _(_) = (s2 + 1)t/2- 8.

Using standard formulas from Laplacetransform theory(e.g.[5])we finally

have the exact conditionat zl - L:

@u _u

(2.6) _ + _ + y-1 (Ikl'_(Iklt) * (7_(_,,, _)))= O.

(Here,* denotes convolution.)

2.2. Approximate Conditions. Although itmay be possibleto di-

rectlyimplement (2.6)using FFT's and fastconvolutions,most work has

been focussedon the development ofapproximate conditionsinvolvingdif-

ferentialoperators in time and, usually,space. Local approximations in

time correspond to rationalapproximations ins to K::

(2.7) (s 2 + Ikl_)'/2 - • = Ikl.((_ + 1)'/_- _) _ IklR(_), - $/1_[._=-



We take R to be a rational function of degree (p,p + I), that is,

(2.8) R(z) : P(z----!dog(P) = p, dog(Q) : p+ i.
QCz)'

The approximate condition may be directly localised in time by apply-
ing the operator _'-*Q(Ikl-10/_)_. However, this leads to differential

operators of high order as p is increased. To develop a more convenient

framework for implementation, we make the additional assumption that

the roots of Q are distinct. Then, R has a partial fraction expansion:

_+1

(2.9) R(_)= _ z= p_"
.i=1

Let

(2.1o) hi = ,,:.lk____l_,
z -- pi

and let e(zx, Ik[,t) be the Fourier transform of v with respect to y. Here,

v denotes the approximation to u computed on the hounded domain. We

finally have the approximate boundary condition:

p+l

(2.11) at o_ _hj o,o_--;+ _ + =
1=1

(2.12) < _.-_--- Ik .9./) _.j -- _./[]c,_.

The advantage of this formulation is clear: the order is increased simply

by increasing the number of terms in the sum. From the point of view of

code development, this is very convenient.

We note that the conditions above are still nonlocal in space. For
periodic problems this is no obstacle, as FFT's can be used. However, the

nonlocality does preclude their use at more general boundaries. A glance

at (2.12) reveals the condition for spatial locality: the poles, pj, of R(z)
must come in conjugate, imaginary pairs, or be 0 and R itself must be an

odd function of z. We may then assume that R has an expansion of the
form:

q
"rjz

(2.13) R(z) = E z 2 + _"
,i='n

This leads to the local implementation:

(2.14) a_,-qa"+ _a" + _ _i = O,
i=Z
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(2.15) (_ -'_Vt_.) ', = -7, .u_'"

We would like to impose such a locality condition on R(z), but it will be

shown later that such approximations cannot lead to good error estimates

uniformly in time or in tangential wave number.

In what follows, we will view

(2.16) _(t) = £-tR(s),

as an approximation to IC(t). For reference we note that (2.9) corresponds
to:

p+l

(2.1_3 _(t) = _,-,_:;',
j=z

while (2.13) implies:

(2.1s)
_=1

2.3. Error Estimates. We have seen that it is relatively straightfor-

ward to implement conditions of increasing order, at least in the half-space

(or periodic) case. This leads to the question of convergence. Naturally,
error estimates for approximate boundary conditions have been considered

(e.g. [2],[8],[13],[20D. However,noneof theseconsiderconvergencefor a
fixed problem in a fixed domain as the order of the conditions is increased.

Let • = u - v be the error. Then • satisfies:

(2.19) e.=:v% t>o, ==(=_,_,)e(o,L)×w'-_=n,

(2.20) e(z,0)-'-0, Boe(0,y,t)"-0,

(2.21) 8_ O_a=-_+ _ + I_?_(Iklt)• _= Ik?E(Iklt)• a.

The error kernel is given by:

(2.22) _'('r) = _(I") J1(r)
-r

Estimates of • naturally require both the stability and consistency of

the approximate boundary conditions. Stability is a consequence of the

uniform Lopatinski condition:

(2.23) s + (_ + Ikl_)_/_+ IklR(=)#-o,



for

(2.24) _(,) _>0, k _ _-1, (s,k) _ (0,0).

Thenwehave(e.g.Sak_oto [22,Ch. 3])"

// /0"Ile(',t)ll_daj_ _<c'2 II_=(L, ",_)ll_oER..-,jdt,(2.25)

where,

(2.26) E= = :_-llkl=ECIklt)• (:_).

The error may now be bounded in terms of the error in the approximation,

_, to _. In particular, suppose, for some/_ _> 0 and T >__1:

(2.27) IIEII_,E(o,_)I-<_T".

Then, by Parseval's identity and standard estimates for convolutions,

T

t2£ =II_,t(o.l_lT)l(2.28) -< /_ L-, Ikl=l_(L'k' )1 II
T

_< _=T="fo II=(L,,t)II_,._¢R_-,1_-

Substituting this into (2.25) we finally obtain:

This error estimate is best, both from the point of view of long time

behavior and from the point of view of smoothness required of u, if/_ = 0.

We note that such an estimate requires bounds on IIEIIz.[(o,=)].Thiscan-
not be attained for local conditions, as we have seen that they involve

convolution kernels which are combinations of cos_j_ (2.18), and, hence,
are not elements of Lz [(0, oo)]. Time uniform estimates could he obtained

using spatially nonlocal conditions, however. Some discussion of long-time

behavior of spatially nonlocal boundary conditions appears in [6,17]. In

[15] we construct conditions using Laguerre and exponential expansions.

Although the conditions so derived do lead to estimates with/_ = 0, con-

vergence as the order of approximation was increased was slow at best.

Below we introduce a new nonlocal approximation based on the direct ap-

proximation to an integral representation for ]C(_).

Our point of view leads to an interesting, and to our knowledge un-

solved, problem in approximation theory. Define _p to be the set of all



real functions in 2;1 [(0, oo)] whose Laplace transform is a rational function

of degree (p, p + 1). More directly, a function in 7_p takes the form:

PX P=

(2.301
j----1 j----1

where q,j and _j are positive and Mj(t / and Nj(t ! axe polynomials. Here
p is given by:

PX P2

(2.31) p+1= 2 __,(deg(Mj) + l)+ __,(deg(Nj) + l).

_=1 j=l

Problem A: For fixed p characterize and find an algorithm to compute the

best LI[(0, oo1] approximation, G E 7_p, to ]C or to other kernels. Estimate
the behavior of the error as p is increased.

The solution of this problem would provide us with optimal approxi-
mations to convolutions via the solution of differential equations. We note

that for bounded intervals and sums excluding trigonometric terms (i.e.

pl = 0), a theory does exist. (See Braess [3, Ch. 6]. /

2.4. Methods Derived via Quadrature. In general, approximate

boundary conditions have been derived either by direct approximation to

the symbol (e.g. [24]) or through the use of far-field asymptotics (e.g.

[2,1611.Here we show how a classof convergent local(inspace and time)

approximate conditionsmay be derivedby approximating the integralrep-

resentationofthe exact kernel:

J (t) I - cos(2.32) 1

The simplest example is the trapezoid rule:

2 q V_ 2j
(2.33) JICtl _ _ 2--_- (q+ 11_. _ - _j cos_ojt., _zj ---1+ q+ 1.

After Laplace transformation we find that:

(2.34)
R(zl -- -(q + 1)_r _ z'2"_'_w_ "

(Of course, in implementations of the condition the number of terms in the
sum can be halved using the evenness in zvj of the integrand. /

The well-posedness of these approximations follows directly from a

check on the Lopatinski condition. (It also follows from general results



for localconditionsin[12,23].)In order toderiveerrorestimates,however,

we must explicitlybound the stabilityconstant,C in (2.29),as a function

of q. Using Parseval'srelation(e.g.[21])we have:

(2.35) C < co(T) sup [ (82 + [k[=)l/= + Ikl [- .=.+,., k_--, s+ (s=+ Ikl=)l/=+ IklR(sllkl) "

Here 7 > 0 is fixed and c0(T) depends on 7 but is independent of the

boundary condition. Dividing through by Ikl we see that our problem is
reduced to the estimation of:

(2.36) sup ICJ(z)l, Q(z) = (z2 ÷ 1)I/2 ÷ 1
e¢=)__.0 z + (z 2 + 1)tl2+ R(z)"

Noting the form of R(z), and recallingthe choiceof branch for the roots,

we see that the Q isbounded as z --_oc independent ofq. Therefore,by

the maximum principle,we can restrictattentionto the imaginary axis,

z = i_7.In thiscase the poles of R are locatedon the imaginary axiswith

[_7[< I and [R[isstrictlydecreasingin]_/]for [y/[> I. Therefore,for 177[> I
we have:

(2.37) IQI

Now

(2.38) 1- IR(OI= 1

To bound thiswe note:

t dw(2.39) 7r =
t vri-'w 2

For q ----2p, even, we have:

P [tuj. dw
(2.40) _r> 2Ej_ 2 " V_ cw 2

j=t '_#- l(q+D

Generally we have:

(2.41) dw
i-2/(q+l)

and for j = 1, q_> 2;

(2.42)

l+v_2- 1 < 1

I_1+ v_- 1 - IR(i)l - 1 - IR(i)l"

2 x-"q 1

•_-

2 1
>

q+l_'

2 1
+

q + 1 _/]"-Z_t"



Hence, for some constant, c, independent of q:

1

1-IR(OI -<':_"(2.43)

For q = 2p+ 1, odd,

(2.44) x -- j-i/_J'-21(q+1) dw_ lv/i-_-_-w 2'

and (2.43)issimilaxlyestablished.For I.I< i we distinguishtwo cases,

I.I < Iwl[ and [_71> [wl[. For the former we have:

2

(2.4s) IQI< _ <-cv_,

while for the latter it is easily shown that IQ[ is maximized at [_[ = 1,
which we have estimated above. Our final estimate is:

(2.46) C _<e(T)v_,

with C independent of q.
To derive error estimates we first estimate the error in the quadrature

formula for fixed L Although the integrand doesn't possess a bounded

derivative, its derivative is integrable. Therefore, employing the Peano

Kernel representation of the error:

(2.47) I _(0 2 cl+2c2 
t (q + 1)____ - _ cos_j_l <_ q

Here, the cj are constants independent of t and q. Then we have:

ll¢,..p(t)ll'-,CCo,T))= I t (q_1)r -- _._cos_jtldt

(2.48) __ _(clT c2T2).+

Substitutingthisinto (2.29)and using (2.46)we finally obtain,for some

_(T) independent of q:

/oT T'/oT(2.49) lle(-,t)llb, t.le _<_-- II_,(L,-,t)ll._.[w.-,ldt.
q

We have shown, then, that the trapezoid rule produces a one-half order

approximation to the true solution in the sense that the error decays at least

as the square root of the reciprocal of the number of terms in the boundary
condition.



A moreaccurateformulais obtainedthroughthe application of the

Gaussian quadrature rule associated with the weight V_ - w=:

q

-- _ -- _ cos wi t , wi = cos -,q+li= _ q+l

(2.51) R(z) - 1 _, (sin=_-_,,+1,
j--1

This approximation is discussed in [15]. Remarkably, it is shown to

be equivalent to the stable Pad6 approximants introduced by Engquist and

M aj da [7,8]. The stability of this approximation is well-known. To estimate

the stability constant, we repeat the analysis given above for the trapezoid

approximation. As in that case, we must estimate (1 - IRCi)D -t. We find:

(2.52) (1-IRCi)I)-* = 1 1 sin= q+l
- q+-----i i- =q+ l.

j=l

We also have:

(2.53)

Hence we conclude:

(2.54)

with C independent of q.

1 1
< cCq+ 1).

v/_- _ sin ,+-_-

C < ¢(T)q,

Using the error formula for the quadrature rule we find [15]:

(T/2)2q +1

(2.55) II&..,.C_)ll_co,r)_<c (2_+ 1); "

From this, (2.29) and (2.54) we prove:

r =q=(T/2)4q+= T

Here we see exponential convergence in q for smooth w, as with spec-

tral approximations to the solutions of differential equations, so that the

method might reasonably be called infinite order.

Clearly, these estimates are nonuniform in T, as must be the case for

spatially local boundary conditions. (See (2.18).) In [14,15] we presented a

number of methods for approximating the convolution kernel by decaying
functions, including exponential interpolation, exponential least squares
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andapproximationsby Laguerre functions. None of these seemed entirely

sati_actory: the interpolation could not be easily extended to high order,

while the other approximations converged very slowly (if at all) in LI(O, oo).

(We note that the proposed conditions have not yet been tested.)
In order to use quadrature to construct long-time approximations we

must derive an integral representation of Jl(_)/_ involving an integrand

which decays in t. This may be accomplished by treating (2.41 as a complex

integral and deforming the contour. For example, let:

(2.sv) , = _ + i(1- _)v(,_), r > 0, _ e [-1,1].

Then:

(2.58 /

J1Ct)-t 1_ (/c(1- z2)l/2e'Ztdz )_"

1 /_l V_- w2D(_o,Z)d _o,= _

(2.59) DCw,¢) = (fl(_o)cos_ + j:2(_v) sin u.r_)e-¢1-_)Pc_)',

(2.60) /I(_)= #(_)+ (2_v(_)- (i-_)v'(_))h(_),

(2.61 / f2(_v) -- (2wP(_o) - (1 - w=)P'(tv))g(zv) -/z(_v),

(2.62) g(_vI --G(zv)+ (1- _v2)P2(w)/G(zo),

(2.63) G(zv)-- j1 Jr,_1 + (1+ zv)2P2(zv)J1 + _/I + (I - zv)2P2(zv),

(2.64) h(uJ) - C1 - u:)P(_u)H(u:) - (1 -I-w)V(_o)/H(w),

(2.65)
_/I + _/i + (1 + zv)2P2(zv)

Since the function D(z0,t)issmooth on the intervalof integration,it

isstillreasonable to use the Gaussian quadrature scheme for the weight

x/T:'_ "_.This yields:

q

(2.66) __J'1(t) 1 _--_,sin 2 jl"q--_D(_oj,t),t 2(q + i),=i



(2.sT) R(,) = 2(q+ 1)_,_(z),
j=l

11

• C1 =])PC=s))+/=(=_)=_)sin=,+_C/_(":)(=+ -
C2.58),'s(=)= (=+ (z- =_)P('_))' + _]

We have not yet tested or analyzed these schemes. Finite time error

estimates should be obtainable using the error formula for the quadrature

rule, but the hope is that time independent estimates will hold.

Problem B: Find a function or class of functions, P(w), such that the
resulting scheme leads to weU-posed problems and kernels which converge

to_C_)in_i[(0,oo)l.
3. Genera]|zat |ons.

3.1. An|sotrop|c Problems. The approximations discussed above

are also applicableto problems with anisotropicwave propagation. As a

firstexample, considerthe convectivewave equation with subsonic convec-

tion:

(3.1) +M _z z_=V2u, zI_>L.

We normalize so that _"_zw_ = 1, 0 _< M < 1. To formulate the exact
boundary condition, we seek solutions of the form:

(3.2) _. = Ae x=',

leadingto the quadraticequation,

(3.3) s-l-iM_-'_lkz÷ M_I,_ = >,2_ikl2.
Z>l

The relevantsolution,that is the one with negative real part for _(s)

suf_cientlylarge,isgiven by:

A=

(3.4) -(1-- M2_.o12) -1 ((1-- MD.]I)s "Jr-((,2-{-(1-- M2w_)[]_[2) 1/2- ._)),

where

(3.5) _ = s + iM _ _,/cz.

/>1
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To conveniently express approximations to this condition, we define the

tange.tial material derivative, Dt_n/Dt, by

(3.6) D,_. a )T-_--=_+_,= v,., _,.=M(_= _s ... _. ,

and let D/D_ denote the standard material derivative with respect to the

full velocity U - M(wt ... w,) r. The exact condition is then given by:

O_

M_z)_-:-o=1+ _ + _(Ut=. k)e+ (1 + M_I)IkInA • _,(3.7) (1+

(3.s) _.(k,_)= .x_(.,/i- M=,,,_=IkPe_,Cv,..._),.
_/Z- M=,,,_=Iklt)

Using therationalapproximation_/1 -- M=_I_IR(_),with= = _/(_/z- M==_lkl),
we obtain, in analogy with (2.11-2.12),

O_ 8# p+i

(3.9) (1 -F Mwi)_zl -F _ + i(Ut_ •/c)@+ _-_ b =0,
j=l

The approximate condition is local in space under the same conditions for

locality in the isotropic case, that is (2.13). Then we have:

(3.11) Or Dv qo=--:+_ +Z_ = o,
j=l

\
2 2 2 2 |

(3.12) -- (I - M wl)/_; Vtu) _bj = -(1 -F M0;1)TjV_=m Dtuv

We are confident that issues of consistency and convergence for these

approximations could be handled as in the isotropic case, but we have not

yet carried out the details. Below we see that the same operators appear
in boundary conditions for the linearised compressible Euler and Navier-

Stokes systems.

3.2. Appl|cat|ons to Fluid Dynamics. We now consider the com-

pressible Euler equations linearised about a uniform flow in two space di-
mensions:

(3.13) Du Op_+_ =o,



(3.14) Dv 8p
_-+ _ =o,

13

(3.15) Dp + au or
_+_=o,

2 _--I,O<M< I.where D/Dt = O/St + Mw=8/Sz + MoJ_8/S9, _,, + car
We suppose w= > 0 and put artificial boundaries at z = +L; that is inflow
at -L and outflow at L.

To compute exact conditions we Laplace transform in t, Fourier trans-

form in y, and rewrite the system in the form:

/(/(3.16 _ = _ _k
. M_= M'_ •

l-M=aj __

Here, _ = s + ikMw_. Eigenvalues and left eigenvectors of the coe_cient

matrix are given by:

(3.17) ,_t -- "_ + M_,._
1- M___ ' t_ = (_ - ikM_. - J),

(3.18) _ - -f--M_,_ , t_ = (_ - ikM_= .4),

(3.19) AS = --_

where

(3._.o)

Noting that _(_t) >
_0= (u r p)r:

M_,_¢ z,

._= (_=+ (1 - M=,,,_)_=)'/_.

0 and _(A_.s) < 0 for _(s) > 0 we have, setting

(3.2_) C_ = o, ..= z; C_ = C_ = o, = = -z.

The exact outflow boundary conditionisthen given by:

(3.22) (_ + ikM_a_) (_- ,) - ikM_=_- (1- M_c2-)k_A *,= O.

The exact inflow conditions are given by:

(3.23) (_ + ikMo_,) (v.+ p)- ikMw=_ + (1- M_a:)k'A * ,= O,



14

(3.24) (_ + i_=,)e + iku==a + _p= 0.

Here,

I_(%/I- M2_tt) e__k...,"
(3.2S) X(k,O = Vi - ___k_

Usingthe rational approximation %/1 -- M2w- 21klR(_), for• = i/(%/1 - M2___Ikl),
equations (3.22-3.23)become, in analogy with (3.9-3.10),

p+l

j=l

at outflow and at inflow,

p+l

(3.28) (_ + ikMw.) (_ + ,) - ikMoJ=_ + Eg, = O,
j=l

(3.29) (-_ + ikMwy - %/1- M2w_=lklp j) gj = _jk2(1 - M2w2-)p.

The approximate conditions are local in space under the same con-

ditions for locality in the scalar case, that is (2.13). In particular, if we

use the Engquist-Majda-Padd-Gaussian approximation, (2.51), we have, at
outflow:

(3.30) Dtu (_ _ p) _ Mw, Or '

j=l

+ %/1- M___ cos _ ¢_ =

(3.31) _______1 sin, jlr (1- M'w=_ 02P
q+l q+l _- ='By 2"

The inflow conditionsbecome:

(3.32) _'a(u +p) - M_=_ + _j = O,
j=l



(3.33)

+ ql - M2w, _ cos q 7 1 8y @j =

1 sina jTr a a aaP
q + 1 q--_(1 - M w,)_-_.

15

(3.34) Dtuv
/:g

ap
-- + M_O=_y + _y = O.

These conditions have been implemented by Goodrich [9] for channel

flows, and shown to be very accurate even for moderate q. Note that

(3.34) implies zero vorticity at inflow and, for the linearised problem, it is

exact. Also, we have used an alternative representation of the approximate
conditions with the property that the auxiliary functions are computed by
solving first order equations.

A similar construction has been carried out for the linearized, isen-
tropic, compressible Navier-Stokes equations in the low Mach number limit

by the author and Lorenz [18]. Here, we require two boundary conditions

at outflow and three at inflow. The conditions (3.22), (3.23) and (3.34)
remain the same to leading order. The axlditional condition at outflow is

(3.35) Dr 8p

and at inflow is given by:

(3.36) 8u Oio

We note that here we generally expect that long time computations, as mea-

sured on the time scale of the sound waves, will be of interest. Therefore,

nonlocal approximations may be efficient. As part of his doctoral disserta-

tion, L. Xu is looking into such approximations and their applications in

acoustics. Some of his results will appear in [19].

3.3. Corner Conditions. The boundary conditions, as discussed so

far, only apply to half-space or periodic problems. To generalize their
applicability, one must understand how to treat the case of an artificial

boundary intersecting another part of the boundary at a corner. Collino

[4] has solved this problem for the important special case of the isotropic

wave equation, two artificial boundaries intersecting at a right angle, and

spatially local boundary conditions. (We note that our formulation of the

exact conditions and spatially nonlocal approximations is not valid in this
case.)

As a first attempt to generalize Collino's results, we have considered

the convective wave equation in a rectangular domain with all boundaries

artificial and the spatially local boundary conditions (3.11-3.12). Collino's
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construction does not directly apply, as it is based on special exact solu-

tions of the wave equation in a comer. We have, instead, looked at power

series expansions in the comer. These do lead to compatibility conditions

which can be used to relate the auxiliary functions associated with distinct

boundaries. However, it seems that the expansion must be carried out to

order greater than 4q to produce the q required conditions. We have tried

to do this symbolically, but so far have succeeded only for q <_ 2.

Problem C: Derive corner compatibility relations for local approximate

boundary conditions for anisotropic systems.
We also note that the theory of exact conditions and nonlocal approx-

imations is still undeveloped.

Problem D: Characterise the exact boundary condition for the wave equa-

tion and convective wave equation with a rectangle or rectangular par-

allelipiped as artificial boundary. Construct convergent temporally local

approximate conditions.
Another case of practical importance should be analyzed is the inter-

sectionofan artificialboundary with a physicalboundary, such as a solid

wall. As a firstexample consider the convectivewave equation in two

space dimensions with convectioninthe z directionand wallsat y : 0 and

y=H:

0)'(3.37) +M_z u= V2u, (z,l/)G (0,oo) x (0,H),

(3.38) ao_yy - ;30u----0,

We can expand the solution:

(3.39) u = _ _ZI_(9),
l

_=0; al_-_y+_l_,=O, y=H.

I_(y) = Az cos kzy + Bz sin kzg,

where the eigenvalues, /q, are determined by the boundary conditions.

Then, _z satisfies (3.7), and for the approximate local boundary condition

(3.11)-(3.12) we have:

(3.40) _j = _ _jZ_(_/)-
|

Since the eigenfunctions, I_, satisfy (3.38) so would the _j, under the as-

sumption that the expansion is sufficiently regular. That is:

(3.41) aoO-_.._ -/3o@j = 0, !/= 0; + = 0, y= H.up
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We should emphasize that this is generally not a true solution of the com-
patibility problem, but simply an approximation which we have used.

This approximation can be extended to the linearised, compressible

Euler system, again with the physical assumption that the base flow is

parallel to the walls, y = O, H. The physical boundary condition at this

characteristic boundary is:

(3.42) r = O,

while a second relation, implied by the y-momentum equation is:

(3.43) 8__p.p= 0.
8_

Using these we see that the solution can be expanded in the form:

u = E "_zcos lxy/H, v = >-'_z_z sin lxy/H,
l

(3.44) p = >-_,p,cosl_y/S.

To relate these expansions to expansions of the auxiliary variables, we note
that:

j_ (q + 1- j)_
(3.45) cos q--_ + cos q+l --0.

Hence, equations (3.31) and (3.33)imply:

(3.46) _bj + _b,+1-j= E _: cosIxy/H,
!

(3.47)

with boundary conditions:

(3.48) 8_j _,+z-j = O,
8"-'_-+ ay

,_j + _q+x-_ = _ _t cosZxy/H,
l

-_-y + 8y --0, y = O,H.

These are the corner conditions used by Goodrich in [g].

3.4. Smooth Boundaries. Given the theoretical and practical dif-

ficulties of high-order boundary conditions at artificial boundaries with

corners, smooth artificial boundaries are an attractive alternative. Repre-

sentations of the exact boundary condition for the wave equation at circular

and spherical artificial boundaries are easily obtained. (See [17].)

Using polar coordinates in two dimensions, we place the artificial bound-

ary at r = R and expand the solution, u, in a Fourier series in 8:

(3.49) uCr,8,t) = E Qze'Ze.



The exact boundary condition is then given by:

a,o,+ _z i 1
(3.50) a-T+ _- + _m + _A,(t/R) • ez= 0,

18

where

(3.53) V_phere _ = --l(l -I'- 1)1_.

In analogy with the two-dimensional case, the exact condition is related

to the inverse Laplace transform of the logarithmic derivative of spherical

Bessel functions. In particular we have:

(3.54) --at+ --_+ -_m-+ _ s,c_IR)•f,,= o,

(3.55)

where, for I _ O,

,-1 (21-k)t . -k
(3.581a(.) = _ kt(z- k- 1)t(2") '

k=0

and So = 0.

we ir_ediately observethat &(_) is rationaland, therefore,(3.54)
may be localised in time. (The fact that the exact boundary condition
can be localized in time for a finite number of spherical harmonics is also

noted by Grote and Keller [10].) What has not been accomplished so

< (z-112Kz+112(z))'+1+ lI P2(z)"_'(_)=-_ _-_]_K,+_/_(_) - Q,(_)'

' (_.z- J+)t(_-,)t
e,(_)= _ kt(z-k)!

/B----0

(K_(z) 1 1(3.51) AzCz) = -z k.Kz(z)+ 1+ _ •

(Here,K, Cz) isthe modified Bessel function [1].)

We have not, as yet,found a closedform expressionfor As. We note

that conditions based on far-field expansions (e.g. [2,18]) correspond to

large z expansions of .4z. By the results of [17], long time accuracy is
difIicult to achieve using time-local conditions, as A0 decays slowly as t --*

OO.

In three dimensions, on the other hand, the exact condition takes a

much simpler form. Here we use spherical coordinates and take 1" = R

as our arthCicial boundary. The solution, u, is now expanded in spherical
harmonics:

(3.52) uCr, 8, q_,t,) = _ _|Y_(8, @),
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far is to derive a convenient factorisation or expansion of Pt(z)/Qz(z), to

facilitate numerical implementation. However, even if this must be done

numerically, the availability of simple, exact conditions makes the use of a

spherical boundary very attractive.

We note that an important advantage of rectangular boundaries is

the possibility of adjusting the aspect ratio of the domain. To do this

with a smooth boundary, while maintaining a natural, separable coordinate

system, one might need elliptical and spheroidal coordinates. This suggests

our final problem.

Problem E: Characterise and approximate the exact boundary condition

for the wave equation at elliptical and spheroidal boundaries.
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A. Derivation of Equation (2.4). Our goal is to compute a useful

representation of the inverse Laplace transform of:

CA.1) £(a) -- (,*a -I- 1) z/' - a.

Although the inverse is available in standard tables, its importance to our

work suggests the inclusion of a direct verification.

Following the ideas given in [5, Ch. 38], we will derive a simple differ-

ential equation satisfied by/C(t). We first note that/C satisfies a first order

differentialequation with quadraticcoefficient=:

(A.2) (a2-l-1) d/C s/C 1.
-_-s= -

Recall that:

(A.3)

p--1,q
= :/- :('>(o+):-'-*=

_'----0

Therefore,(A.2) isequivalent to:

(A.4) da t d/C_(/C) + -_- -I-t'_--i --2/C(0+).

That is,/C(t)satisfiesthe differentialequation:

da/C 3d/C
(A.5) ta--/r+ _f + t_=__MIC= o,

subject to the initialcondition,

I

(A.6) /C(0)= _,

in addition to a growth conditionat infinity.
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We now verify that:

1 J; V_" w 2CA.7) /c(_)=_ i - ugdw,cos

solvesthisproblem. That the initialconditionissatlsfiedmay be checked

directly.Applying the differentialoperatorwe obtain:

/' /_M/C = (1 - _2)3/2_cos_tdw - 3 lv/':_----_-_-w2wsinwtdw
1 1

I I

_- O.

Finally,we recallthe identity,

(A.9) J'(_) = _ fl V_ - w 2 cos wgdw,
1" j_ 1

which may be found, e.g., in [1].



FormApproved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Davis Hl_hw_/. Suite 1204. Arl_ton. VA 2220Q-430Q.and to the Office of Mana0eme_t and Budge(. apetwod( ReductionPro_ (0704-0188). Was ¢_iton. ut.; :, .

1. AGENCY USE ONLY (Leave b/an/t) 2. REPORT PATE 3. REPORT TYPE AND DATES COVERED

September 1995 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

On High-Order Radiation Boundary Conditions

6, AUTHOR(S)

Thomas Hagstrom

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computational Mechanics in Propulsion
22800 Cedar Point Road

Cleveland, Ohio 44142

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

NationalAeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135 -3191

WU-505-90-5K

NCC3-370

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-9918

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198404

ICOMP-95-15

11. SUPPLEMENTARY NOTES

ICOMP Program Director, Louis A. PovineUi, organization code 2600, (216) 433-5818.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Categories 34 and 64

This publication is available from the NASA Center for Aea, ospaee Information, (301) 621-0390,

13. ABSTRACT (Maximum 200 words)

In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In

particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition,

and subsequendy estimate the error in the solutions obtained using these approximations. We show that for finite times

the Pad_ approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but

that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also
discussed.

14. SUBJECT TERMS

Radiationboundary conditions;Integralequations;Hyperbolicsystems

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. ,SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

23
16. PRICE CODE

A03

20. uMrrATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102


